| Interface | Description | 
|---|---|
| CoefIndices | |
| DispersionTask.ComputeMaxSumSeriesTsk.CalWVdWVd2WV | 
 This interface is used to calculate one item of the series in log. 
 | 
| Class | Description | 
|---|---|
| ComputationState | |
| ComputationState.GLMSubsetGinfo | 
 This method will grab a subset of the gradient for each multinomial class. 
 | 
| ComputationState.GramGrad | |
| ComputationState.GramXY | 
 Cached state of COD (with covariate updates) solver. 
 | 
| ConstrainedGLMUtils | |
| ConstrainedGLMUtils.CoefIndices | |
| ConstrainedGLMUtils.ConstraintGLMStates | |
| ConstrainedGLMUtils.ConstraintsDerivatives | |
| ConstrainedGLMUtils.ConstraintsGram | |
| ConstrainedGLMUtils.LinearConstraintConditions | |
| ConstrainedGLMUtils.LinearConstraints | |
| DispersionTask | |
| DispersionTask.ComputeMaxSumSeriesTsk | 
 This class will compute the following for every row of the dataset:
 1. 
 | 
| DispersionTask.ComputeMaxSumSeriesTsk.EvalLogD2WVEnv | |
| DispersionTask.ComputeMaxSumSeriesTsk.EvalLogDWVEnv | |
| DispersionTask.ComputeMaxSumSeriesTsk.EvalLogWVEnv | |
| DispersionTask.ComputeTweedieConstTsk | 
 Class to pre-calculate constants assocated with the following processes:
 1. 
 | 
| DispersionTask.GenPrediction | |
| DispersionUtils | |
| GLM | 
 Created by tomasnykodym on 8/27/14. 
 | 
| GLM.BetaInfo | |
| GLM.GLMGradientInfo | |
| GLM.GLMGradientSolver | 
 Gradient and line search computation for L_BFGS and also L_BFGS solver wrapper (for ADMM) 
 | 
| GLM.GramSolver | 
 Created by tomasnykodym on 3/30/15. 
 | 
| GLM.PlugValuesImputer | |
| GLM.ProximalGradientInfo | |
| GLM.ProximalGradientSolver | 
 Simple wrapper around ginfo computation, adding proximal penalty 
 | 
| GLMMetricBuilder | 
 Class for GLMValidation. 
 | 
| GLMModel | 
 Created by tomasnykodym on 8/27/14. 
 | 
| GLMModel.GLMOutput | |
| GLMModel.GLMParameters | |
| GLMModel.GLMWeights | |
| GLMModel.GLMWeightsFun | |
| GLMModel.RegularizationPath | |
| GLMModel.Submodel | |
| GLMMojoWriter | |
| GLMScore | 
 Created by tomas on 3/15/16. 
 | 
| GLMScoringInfo | |
| GLMTask | 
 All GLM related distributed tasks:
 YMUTask           - computes response means on actual datasets (if some rows are ignored - e.g ignoring rows with NA and/or doing cross-validation)
 GLMGradientTask   - computes gradient at given Beta, used by L-BFGS, for KKT condition check
 GLMLineSearchTask - computes residual deviance(s) at given beta(s), used by line search (both L-BFGS and IRLSM)
 GLMIterationTask  - used by IRLSM to compute Gram matrix and response t(X) W X, t(X)Wz 
 | 
| GLMTask.ComputeDiTriGammaTsk | 
 This function will assist in the estimation of dispersion factors using maximum likelihood 
 | 
| GLMTask.ComputeGammaMLSETsk | 
 This function will assist in the estimation of dispersion factors using maximum likelihood 
 | 
| GLMTask.ComputeSEorDEVIANCETsk | |
| GLMTask.GLMCoordinateDescentTaskSeqIntercept | |
| GLMTask.GLMCoordinateDescentTaskSeqNaive | |
| GLMTask.GLMGaussianGradientTask | |
| GLMTask.GLMGenerateWeightsTask | |
| GLMTask.GLMIterationTask | 
 One iteration of glm, computes weighted gram matrix and t(x)*y vector and t(y)*y scalar. 
 | 
| GLMTask.GLMIterationTaskMultinomial | |
| GLMTask.GLMMultinomialGradientBaseTask | |
| GLMTask.GLMMultinomialGradientTask | |
| GLMTask.GLMMultinomialUpdate | |
| GLMTask.GLMMultinomialWLSTask | |
| GLMTask.GLMWLSTask | |
| GLMTask.LSTask | 
 Task to compute t(X) %*% W %*%  X and t(X) %*% W %*% y 
 | 
| GLMTask.YMUTask | |
| GLMUtils | |
| RegressionInfluenceDiagnosticsTasks | 
 Classes defined here implemented the various pieces of regression influence diagnostics described in this doc:
 https://github.com/h2oai/h2o-3/issues/7044. 
 | 
| RegressionInfluenceDiagnosticsTasks.ComputeNewBetaVarEstimatedGaussian | |
| RegressionInfluenceDiagnosticsTasks.RegressionInfluenceDiagBinomial | |
| RegressionInfluenceDiagnosticsTasks.RegressionInfluenceDiagGaussian | 
 generate DFBETAS as in equation 4 of the document. 
 | 
| TweedieEstimator | |
| TweedieMLDispersionOnly | 
 class to find bounds on infinite series approximation to calculate tweedie dispersion parameter using the 
 maximum likelihood function in Dunn et.al. 
 |