public static class GLMModel.GLMParameters
extends hex.Model.Parameters
Modifier and Type | Class and Description |
---|---|
static class |
GLMModel.GLMParameters.Constraints |
static class |
GLMModel.GLMParameters.DispersionMethod |
static class |
GLMModel.GLMParameters.Family |
static class |
GLMModel.GLMParameters.GLMType |
static class |
GLMModel.GLMParameters.Influence |
static class |
GLMModel.GLMParameters.Link |
static class |
GLMModel.GLMParameters.MissingValuesHandling |
static class |
GLMModel.GLMParameters.Solver |
_auc_type, _auto_rebalance, _auuc_nbins, _auuc_type, _balance_classes, _categorical_encoding, _check_constant_response, _checkpoint, _class_sampling_factors, _custom_distribution_func, _custom_metric_func, _cv_fold, _distribution, _export_checkpoints_dir, _fold_assignment, _fold_column, _gainslift_bins, _huber_alpha, _ignore_const_cols, _ignored_columns, _is_cv_model, _keep_cross_validation_fold_assignment, _keep_cross_validation_models, _keep_cross_validation_predictions, _keep_cross_validation_predictions_precision, _main_model_time_budget_factor, _max_after_balance_size, _max_categorical_levels, _max_confusion_matrix_size, _max_runtime_secs, _nfolds, _offset_column, _parallelize_cross_validation, _preprocessors, _pretrained_autoencoder, _quantile_alpha, _response_column, _score_each_iteration, _seed, _stopping_metric, _stopping_rounds, _stopping_tolerance, _train, _treatment_column, _tweedie_power, _valid, _weights_column, MAX_SUPPORTED_LEVELS
Constructor and Description |
---|
GLMParameters() |
GLMParameters(GLMModel.GLMParameters.Family f) |
GLMParameters(GLMModel.GLMParameters.Family f,
GLMModel.GLMParameters.Link l) |
GLMParameters(GLMModel.GLMParameters.Family f,
GLMModel.GLMParameters.Link l,
double[] lambda,
double[] alpha,
double twVar,
double twLnk) |
GLMParameters(GLMModel.GLMParameters.Family f,
GLMModel.GLMParameters.Link l,
double[] lambda,
double[] alpha,
double twVar,
double twLnk,
java.lang.String[] interactions) |
GLMParameters(GLMModel.GLMParameters.Family f,
GLMModel.GLMParameters.Link l,
double[] lambda,
double[] alpha,
double twVar,
double twLnk,
java.lang.String[] interactions,
double theta) |
GLMParameters(GLMModel.GLMParameters.Family f,
GLMModel.GLMParameters.Link l,
double[] lambda,
double[] alpha,
double twVar,
double twLnk,
java.lang.String[] interactions,
double theta,
double dispersion_estimated) |
Modifier and Type | Method and Description |
---|---|
java.lang.String |
algoName() |
boolean |
canonical() |
double |
deviance(double yr,
double ym) |
double |
deviance(float yr,
float ym) |
java.lang.String |
fullName() |
hex.genmodel.utils.DistributionFamily |
getDistributionFamily() |
boolean |
imputeMissing() |
hex.Model.InteractionSpec |
interactionSpec() |
java.lang.String |
javaName() |
double |
likelihood(double yr,
double ym) |
double |
likelihood(double w,
double yr,
double[] ym) |
double |
linkDeriv(double x) |
double |
linkInv(double x) |
DataInfo.Imputer |
makeImputer() |
GLMModel.GLMParameters.MissingValuesHandling |
missingValuesHandling() |
long |
progressUnits() |
void |
setDistributionFamily(hex.genmodel.utils.DistributionFamily distributionFamily) |
void |
updateTweedieParams(double tweedieVariancePower,
double tweedieLinkPower,
double dispersion) |
void |
validate(GLM glm) |
double |
variance(double mu) |
checksum, checksum, defaultDropConsCols, defaultStoppingTolerance, getCategoricalEncoding, getDependentKeys, getFoldColumn, getMaxCategoricalLevels, getNonPredictors, getOffsetColumn, getOrMakeRealSeed, getResponseColumn, getTreatmentColumn, getUsedColumns, getWeightsColumn, hasCheckpoint, hasCustomMetricFunc, missingColumnsType, read_lock_frames, read_unlock_frames, setTrain, train, valid
public boolean _standardize
public boolean _useDispersion1
public GLMModel.GLMParameters.Family _family
public GLMModel.GLMParameters.Link _link
public GLMModel.GLMParameters.Solver _solver
public double _tweedie_variance_power
public double _tweedie_link_power
public double _dispersion_estimated
public double _theta
public double _invTheta
public double[] _alpha
public double[] _lambda
public double[] _startval
public boolean _calc_like
public int[] _random_columns
public int _score_iteration_interval
public java.io.Serializable _missing_values_handling
public double _prior
public boolean _lambda_search
public boolean _cold_start
public int _nlambdas
public boolean _non_negative
public double _lambda_min_ratio
public boolean _use_all_factor_levels
public int _max_iterations
public boolean _intercept
public double _beta_epsilon
public double _dispersion_epsilon
public int _max_iterations_dispersion
public double _objective_epsilon
public double _gradient_epsilon
public double _obj_reg
public boolean _compute_p_values
public boolean _remove_collinear_columns
public java.lang.String[] _interactions
public hex.StringPair[] _interaction_pairs
public boolean _early_stopping
public water.Key<water.fvec.Frame> _beta_constraints
public water.Key<water.fvec.Frame> _linear_constraints
public boolean _expose_constraints
public water.Key<water.fvec.Frame> _plug_values
public int _max_active_predictors
public boolean _stdOverride
public GLMModel.GLMParameters.GLMType _glmType
public boolean _generate_scoring_history
public GLMModel.GLMParameters.DispersionMethod _dispersion_parameter_method
public double _init_dispersion_parameter
public boolean _fix_dispersion_parameter
public boolean _build_null_model
public boolean _generate_variable_inflation_factors
public double _tweedie_epsilon
public boolean _fix_tweedie_variance_power
public int _max_series_index
public boolean _debugTDispersionOnly
public double _dispersion_learning_rate
public GLMModel.GLMParameters.Influence _influence
public boolean _keepBetaDiffVar
public boolean _separate_linear_beta
public boolean _init_optimal_glm
public double _constraint_eta0
public double _constraint_tau
public double _constraint_alpha
public double _constraint_beta
public double _constraint_c0
public GLMParameters()
public GLMParameters(GLMModel.GLMParameters.Family f)
public GLMParameters(GLMModel.GLMParameters.Family f, GLMModel.GLMParameters.Link l)
public GLMParameters(GLMModel.GLMParameters.Family f, GLMModel.GLMParameters.Link l, double[] lambda, double[] alpha, double twVar, double twLnk)
public GLMParameters(GLMModel.GLMParameters.Family f, GLMModel.GLMParameters.Link l, double[] lambda, double[] alpha, double twVar, double twLnk, java.lang.String[] interactions)
public GLMParameters(GLMModel.GLMParameters.Family f, GLMModel.GLMParameters.Link l, double[] lambda, double[] alpha, double twVar, double twLnk, java.lang.String[] interactions, double theta)
public GLMParameters(GLMModel.GLMParameters.Family f, GLMModel.GLMParameters.Link l, double[] lambda, double[] alpha, double twVar, double twLnk, java.lang.String[] interactions, double theta, double dispersion_estimated)
public java.lang.String algoName()
algoName
in class hex.Model.Parameters
public java.lang.String fullName()
fullName
in class hex.Model.Parameters
public java.lang.String javaName()
javaName
in class hex.Model.Parameters
public long progressUnits()
progressUnits
in class hex.Model.Parameters
public void validate(GLM glm)
public final double variance(double mu)
public final boolean canonical()
public final double deviance(double yr, double ym)
public final double deviance(float yr, float ym)
public final double likelihood(double yr, double ym)
public final double likelihood(double w, double yr, double[] ym)
public final double linkDeriv(double x)
public final double linkInv(double x)
public hex.Model.InteractionSpec interactionSpec()
public GLMModel.GLMParameters.MissingValuesHandling missingValuesHandling()
public boolean imputeMissing()
public DataInfo.Imputer makeImputer()
public void setDistributionFamily(hex.genmodel.utils.DistributionFamily distributionFamily)
setDistributionFamily
in class hex.Model.Parameters
public hex.genmodel.utils.DistributionFamily getDistributionFamily()
getDistributionFamily
in class hex.Model.Parameters
public void updateTweedieParams(double tweedieVariancePower, double tweedieLinkPower, double dispersion)