public static class GLMModel.GLMOutput
extends hex.Model.Output
_column_types, _cross_validation_fold_assignment_frame_id, _cross_validation_holdout_predictions_frame_id, _cross_validation_metrics, _cross_validation_metrics_summary, _cross_validation_models, _cross_validation_predictions, _cv_scoring_history, _defaultThreshold, _distribution, _domains, _end_time, _hasFold, _hasOffset, _hasTreatment, _hasWeights, _isSupervised, _job, _model_summary, _modelClassDist, _names, _orig_projection_array, _origDomains, _origNames, _priorClassDist, _reproducibility_information_table, _run_time, _scoring_history, _start_time, _total_run_time, _training_metrics, _validation_metrics
Constructor and Description |
---|
GLMOutput() |
GLMOutput(DataInfo dinfo,
java.lang.String[] column_names,
java.lang.String[] column_types,
java.lang.String[][] domains,
java.lang.String[] coefficient_names,
double[] beta,
boolean binomial,
boolean multinomial,
boolean ordinal) |
GLMOutput(GLM glm) |
Modifier and Type | Method and Description |
---|---|
double |
alpha_best() |
GLMModel.Submodel |
bestSubmodel() |
int |
bestSubmodelIndex() |
double[] |
beta() |
static double[] |
calculatePValuesFromZValues(double[] zValues,
boolean dispersionEstimated,
long residualDegreesOfFreedom) |
static double[] |
calculateStdErrFromZValues(double[] zValues,
double[] beta) |
hex.VarImp |
calculateVarimp() |
protected long |
checksum_impl() |
java.lang.String[] |
classNames() |
java.lang.String[] |
coefficientNames() |
double |
dispersion() |
boolean |
dispersionEstimated() |
static water.fvec.Frame |
expand(water.fvec.Frame fr,
hex.Model.InteractionSpec interactions,
boolean useAll,
boolean standardize,
boolean skipMissing) |
double[][] |
get_global_beta_multinomial() |
DataInfo |
getDinfo() |
hex.ModelCategory |
getModelCategory() |
double[] |
getNormBeta() |
double[][] |
getNormBetaMultinomial() |
double[][] |
getNormBetaMultinomial(int idx) |
double[][] |
getNormBetaMultinomial(int idx,
boolean standardized) |
GLMModel.Submodel |
getSubmodel(double lambdaCVEstimate) |
GLMModel.Submodel |
getSubmodel(int submodel_index) |
water.util.TwoDimTable |
getVariableImportances() |
double[] |
getVariableInflationFactors() |
java.util.Map<java.lang.String,java.lang.Double> |
getVIFAndNames() |
java.lang.String[] |
getVIFPredictorNames() |
double[] |
getZValues() |
boolean |
hasPValues() |
boolean |
hasVIF() |
hex.Model.InteractionBuilder |
interactionBuilder() |
boolean |
isStandardized() |
boolean |
isSupervised() |
double |
lambda_1se() |
double |
lambda_best() |
double |
lambda_selected() |
java.lang.String[] |
multiClassCoeffNames() |
int |
nclasses() |
GLMModel.Submodel |
pickBestModel(GLMModel.GLMParameters parms) |
double[] |
pValues() |
int |
rank() |
void |
setLambdas(GLMModel.GLMParameters parms) |
void |
setSubmodelIdx(int l,
GLMModel.GLMParameters parms) |
double[] |
stdErr() |
double[] |
variableInflationFactors() |
double[][] |
vcov()
Variance Covariance matrix accessor.
|
double[] |
ymu() |
double[] |
zValues() |
changeModelMetricsKey, clearModelMetrics, createInputFramesInformationTable, defaultThreshold, features, foldIdx, foldName, getInformationTableNumRows, getModelMetrics, hasFold, hasOffset, hasResponse, hasTreatment, hasWeights, isAutoencoder, isBinomialClassifier, isClassifier, isMultinomialClassifier, lastSpecialColumnIdx, nfeatures, offsetIdx, offsetName, printTwoDimTables, resetThreshold, responseIdx, responseName, setNames, setNames, startClock, stopClock, toString, treatmentIdx, treatmentName, weightsIdx, weightsName
public java.lang.String[] _coefficient_names
public long _training_time_ms
public water.util.TwoDimTable _variable_importances
public hex.VarImp _varimp
public double _lambda_1se
public double _lambda_min
public double _lambda_max
public int _selected_lambda_idx
public int _selected_alpha_idx
public int _selected_submodel_idx
public int _best_submodel_idx
public int _best_lambda_idx
public java.lang.String[] _linear_constraint_states
public boolean _all_constraints_satisfied
public water.util.TwoDimTable _linear_constraints_table
public water.Key<water.fvec.Frame> _regression_influence_diagnostics
public water.Key<water.fvec.Frame> _betadiff_var
public int[] _activeColsPerClass
public ConstrainedGLMUtils.LinearConstraints[] _equalityConstraintsLinear
public ConstrainedGLMUtils.LinearConstraints[] _lessThanEqualToConstraintsLinear
public ConstrainedGLMUtils.LinearConstraints[] _equalityConstraintsBeta
public ConstrainedGLMUtils.LinearConstraints[] _lessThanEqualToConstraintsBeta
public java.lang.String[] _constraintCoefficientNames
public double[][] _initConstraintMatrix
public boolean _binomial
public boolean _multinomial
public boolean _ordinal
public GLMOutput(DataInfo dinfo, java.lang.String[] column_names, java.lang.String[] column_types, java.lang.String[][] domains, java.lang.String[] coefficient_names, double[] beta, boolean binomial, boolean multinomial, boolean ordinal)
public GLMOutput()
public GLMOutput(GLM glm)
public double lambda_best()
public double dispersion()
public boolean dispersionEstimated()
public double alpha_best()
public double lambda_1se()
public DataInfo getDinfo()
public int bestSubmodelIndex()
public double lambda_selected()
public boolean hasPValues()
public boolean hasVIF()
public double[] stdErr()
public static double[] calculateStdErrFromZValues(double[] zValues, double[] beta)
public double[] getZValues()
public double[] getVariableInflationFactors()
public java.lang.String[] getVIFPredictorNames()
public java.util.Map<java.lang.String,java.lang.Double> getVIFAndNames()
public water.util.TwoDimTable getVariableImportances()
getVariableImportances
in class hex.Model.Output
public hex.ModelCategory getModelCategory()
getModelCategory
in class hex.Model.Output
protected long checksum_impl()
checksum_impl
in class hex.Model.Output
public double[] zValues()
public static double[] calculatePValuesFromZValues(double[] zValues, boolean dispersionEstimated, long residualDegreesOfFreedom)
public double[] pValues()
public double[] variableInflationFactors()
public void setLambdas(GLMModel.GLMParameters parms)
public int rank()
public double[] ymu()
public boolean isStandardized()
public java.lang.String[] coefficientNames()
public java.lang.String[] multiClassCoeffNames()
public boolean isSupervised()
isSupervised
in class hex.Model.Output
public hex.Model.InteractionBuilder interactionBuilder()
interactionBuilder
in class hex.Model.Output
public static water.fvec.Frame expand(water.fvec.Frame fr, hex.Model.InteractionSpec interactions, boolean useAll, boolean standardize, boolean skipMissing)
public double[][] vcov()
public int nclasses()
nclasses
in class hex.Model.Output
public java.lang.String[] classNames()
classNames
in class hex.Model.Output
public GLMModel.Submodel pickBestModel(GLMModel.GLMParameters parms)
public double[] getNormBeta()
public double[][] getNormBetaMultinomial()
public double[][] getNormBetaMultinomial(int idx)
public double[][] getNormBetaMultinomial(int idx, boolean standardized)
public double[][] get_global_beta_multinomial()
public void setSubmodelIdx(int l, GLMModel.GLMParameters parms)
public double[] beta()
public GLMModel.Submodel bestSubmodel()
public GLMModel.Submodel getSubmodel(double lambdaCVEstimate)
public GLMModel.Submodel getSubmodel(int submodel_index)
public hex.VarImp calculateVarimp()