Skip to main content
Version: v0.11.x

Real time scoring

This example demonstrates how to use the eScorer Python client for real time scoring. You can download the complete example here.

Real time scoring with the Python client

After authenticating the client, you can use the realtime_scorer method to perform real time scoring. The realtime_scorer method takes the model name and dataset file path as required input parameters and returns the result of real time scoring.

response = await client.realtime_scorer(
model_name="<model_name>",
dataset_filepath="/path/to/dataset.csv",
skip_header=True,
num_rows=1000,
progress=True
)

Get the predictions

result["predictions"]
              bad_loan.0           bad_loan.1 
0 0.08621099591255188 0.9137890040874481
1 0.08830222487449646 0.9116977751255035
2 0.03488980233669281 0.9651101976633072
3 0.2397906482219696 0.7602093517780304
4 0.4451645463705063 0.5548354536294937
.. ... ...
995 0.15911102294921875 0.8408889770507812
996 0.03693510591983795 0.963064894080162
997 0.25428231060504913 0.7457176893949509
998 0.1850033551454544 0.8149966448545456
999 0.03011934459209442 0.9698806554079056

[1000 rows x 2 columns]

Get the number of rows scored

result["rows_produced"]
1000

Get the scoring latency

f'{result["time_elapsed"]}s'
135.317s

Feedback