Real time scoring
This example demonstrates how to use the eScorer Python client for real time scoring. You can download the complete example here.
Prerequisites
Real time scoring with the Python client
After authenticating the client, you can use the scorer.realtime
method to perform real time scoring.
The scorer.realtime
method takes the model name and dataset file path as required input parameters and returns the result of real time scoring.
result = await client.scorer.realtime(
model_name="<model_name>",
dataset_filepath="/path/to/dataset.csv",
skip_header=True,
num_rows=1000,
progress=True
)
Get the predictions
result.predictions
bad_loan.0 bad_loan.1
0 0.08621099591255188 0.9137890040874481
1 0.08830222487449646 0.9116977751255035
2 0.03488980233669281 0.9651101976633072
3 0.2397906482219696 0.7602093517780304
4 0.4451645463705063 0.5548354536294937
.. ... ...
995 0.15911102294921875 0.8408889770507812
996 0.03693510591983795 0.963064894080162
997 0.25428231060504913 0.7457176893949509
998 0.1850033551454544 0.8149966448545456
999 0.03011934459209442 0.9698806554079056
[1000 rows x 2 columns]
Get the number of rows scored
result.rows_produced
1000