Prediction settings: Image classification
To score (predict) new data using a built model through the H2O Hydrogen Torch UI, H2O Hydrogen Torch requires the specification of certain settings refer as prediction settings (which are comprised of a certain dataset, prediction and environment settings similar to those when creating an experiment). Below observe the prediction settings for an image classification model.
General settings
Experiment
Defines the model (experiment) H2O Hydrogen Torch uses to score new data.
Prediction name
It defines the name of the prediction.
Dataset settings
Dataset
Specifies the dataset to use for scoring.
Test dataframe
Defines the file(s) containing the test dataframe that H2O Hydrogen Torch will use for scoring.
- Image regression | Image classification | Image metric learning | Text regression | Text classification | Text sequence to sequence | Text span prediction | Text token classification | Text metric learning | Audio regression | Audio classification
- Defines a
.csv
or.pq
file containing the test dataframe that H2O Hydrogen Torch will use for scoring.noteThe test dataframe should have the same format as the train dataframe but does not require label columns.
- Defines a
- Image object detection | Image semantic segmentation | Image instance segmentation
- Defines a
.pq
file containing the test dataframe that H2O Hydrogen Torch will use for scoring.
- Defines a
Data folder test
Defines the folder location of the assets (e.g., images or audios) H2O Hydrogen Torch utilizes for scoring. H2O Hydrogen Torch loads assets from this folder during scoring.
Image column
Specifies the dataframe column storing the names of images that H2O Hydrogen Torch will load from the Data folder test during scoring.
Prediction settings
Metric
Specifies the evaluation metric to use to evaluate the model's accuracy.
Usually, the evaluation metric should reflect the quantitative way of assessing the model's value for the corresponding use case.
Probability threshold
Specifies the evaluation metric to use to evaluate the model's accuracy.
Usually, the evaluation metric should reflect the quantitative way of assessing the model's value for the corresponding use case.
Test time augmentations
Specifies the test time augmentation(s) to apply during inference. Test time augmentations are applied when the model makes predictions on new data. The final prediction is an average of the predictions for all the augmented versions of an image.
Options
Horizontal Flip
H2O Hydrogen Torch applies a horizontal flip as a test time augmentation.
Vertical Flip
H2O Hydrogen Torch applies a vertical flip as a test time augmentation.
This technique can improve the model accuracy.
Environment settings
GPUs
Specifies the list of GPUs H2O Hydrogen Torch can use for scoring. GPUs are listed by name, referring to their system ID (starting from 1).
- Submit and view feedback for this page
- Send feedback about H2O Hydrogen Torch to cloud-feedback@h2o.ai