Skip to main content

Expressions

Expressions enable dynamic values in workflow files. Use expressions to reference workflow inputs, secrets, environment variables, and matrix variables throughout your workflow configuration.

Syntax

${{ .context.field }}

Available contexts

.inputs - Workflow input references

Access workflow inputs defined at the workflow level.

Format: ${{ .inputs.<input_name> }}

The <input_name> is the key from the workflow's inputs definition.

Example:

inputs:
model_type:
type: string
required: true
epochs:
type: string
default: "100"

jobs:
train:
env:
MODEL_TYPE: "${{ .inputs.model_type }}"
EPOCHS: "${{ .inputs.epochs }}"

For more details, see Inputs.

.secrets - Secret references

Access secrets defined at the workflow level.

Format: ${{ .secrets.<reference_name> }}

The <reference_name> is the as field from the secret definition.

Example:

secrets:
- name: workspaces/abc123/secrets/xyz789 # Resource path in H2O Secure Store
as: registry_token # Internal reference name

jobs:
deploy:
env:
REGISTRY_TOKEN: "${{ .secrets.registry_token }}" # Use the reference name

For more details, see Secrets.

.env - Environment variable references

Access environment variables defined at workflow, job, or parent step levels.

Format: ${{ .env.VARIABLE_NAME }}

Example:

env:
DATA_API: https://data.example.com
EXPERIMENT: baseline-v1

jobs:
train:
env:
DATASET_URL: "${{ .env.DATA_API }}/datasets"
RUN_NAME: "Training ${{ .env.EXPERIMENT }}"

For more details, see Environment variables.

.matrix - Matrix variable references

Access matrix variables defined at the job level.

Format: ${{ .matrix.<variable_name> }}

Availability: Only available within jobs that define a matrix field.

Example:

jobs:
train:
matrix:
algorithm: [xgboost, lightgbm, random_forest]
max_depth: ["5", "10", "15"]
steps:
- name: Train model
env:
ALGORITHM: ${{ .matrix.algorithm }}
MAX_DEPTH: ${{ .matrix.max_depth }}
run: python train.py --algorithm $ALGORITHM --max-depth $MAX_DEPTH

For more details, see Matrix jobs.

Where expressions work

You can use expressions in all string fields throughout the workflow, including:

  • Environment variable values (env)
  • Shell commands (run)
  • Upload and download paths (upload.path, upload.destination, download.source, download.path)
  • Working directories (working_dir)
  • Concurrency group identifiers (concurrency.group)
  • Job and step names
  • Workflow call inputs

Type coercion

When you reference inputs in expressions, they automatically convert to strings. This allows inputs of different types to work anywhere string values are expected.

String inputs

String inputs pass through without conversion:

inputs:
model_type:
type: string
default: "xgboost"

env:
MODEL: ${{ .inputs.model_type }} # Result: "xgboost"

Boolean inputs

Boolean values convert to lowercase string literals "true" or "false":

inputs:
debug_mode:
type: bool
default: false

env:
DEBUG: ${{ .inputs.debug_mode }} # Result: "false"

steps:
- run: |
if [ "$DEBUG" = "true" ]; then
echo "Debug mode enabled"
fi

Integer inputs

Integer values convert to decimal string representation:

inputs:
max_retries:
type: int
default: 3

env:
RETRIES: ${{ .inputs.max_retries }} # Result: "3"

steps:
- run: python script.py --retries $RETRIES
Note

All expression values are strings. The coercion happens automatically when you reference inputs in expressions.

Limitations

Literal expression syntax

There is no escape mechanism for literal ${{ strings. If you need to output the literal text ${{ .inputs.foo }}, the system evaluates it as an expression.

Workaround: Use shell string concatenation or alternative formatting:

run: echo 'Use $''{{ .inputs.name }} to reference inputs'

Security considerations

warning

Command injection risk: User-provided inputs in expressions can contain malicious shell commands (for example, xgboost; rm -rf /).

Best practices

  1. Use environment variables instead of direct interpolation in shell commands:

    steps:
    - name: Train model
    env:
    MODEL_TYPE: "${{ .inputs.model_type }}"
    run: python train.py --model "$MODEL_TYPE"
  2. Validate and sanitize inputs before they reach workflows.

  3. Quote shell variables to prevent word splitting.

  4. Avoid expressions in sensitive fields like file paths when using untrusted inputs.


Feedback