Dataset Column Details¶
First, we'll initialize a client with our server credentials and store it in the variable dai
.
In [1]:
Copied!
import driverlessai
dai = driverlessai.Client(address='http://mr-dl26:12345', username='py', password='py')
import driverlessai
dai = driverlessai.Client(address='http://mr-dl26:12345', username='py', password='py')
In [5]:
Copied!
dai.datasets.list()
dai.datasets.list()
Out[5]:
| Type | Key | Name ----+---------+--------------------------------------+-------------- 0 | Dataset | 20bc1880-efb7-11eb-82af-0242c0a8fe02 | iris.csv.zip
In [7]:
Copied!
dataset = dai.datasets.list()[0]
dataset = dai.datasets.get("20bc1880-efb7-11eb-82af-0242c0a8fe02")
dataset = dai.datasets.list()[0]
dataset = dai.datasets.get("20bc1880-efb7-11eb-82af-0242c0a8fe02")
In [9]:
Copied!
dataset.column_summaries()
dataset.column_summaries()
Out[9]:
<<C1 Summary>, <C2 Summary>, <C3 Summary>, <C4 Summary>, <C5 Summary>>
In [18]:
Copied!
C1_summary = dataset.column_summaries()["C1"]
C1_summary = dataset.column_summaries()["C1"]
In [19]:
Copied!
print(C1_summary)
print(C1_summary)
--- C1 --- 4.3|███████ |█████████████████ |██████████ |████████████████████ |████████████ |███████████████████ |█████████████ |████ |████ 7.9|████ Data Type: real Logical Types: [] Datetime Format: Count: 150 Missing: 0 Mean: 5.84 SD: 0.828 Min: 4.3 Max: 7.9 Unique: 35 Freq: 10
In [20]:
Copied!
C5_summary.sd
C5_summary.sd
Out[20]:
0.8280661279778637